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ABSTRACT
BACKGROUND: Patients with major depressive disorder (MDD) can present with altered brain structure and deficits
in cognitive function similar to those seen in aging. However, the interaction between age-related brain changes and
brain development in MDD remains understudied. In a cohort of adolescents and adults with and without MDD, we
assessed brain aging differences and associations through a newly developed tool that quantifies normative
neurodevelopmental trajectories.
METHODS: A total of 304 participants with MDD and 236 control participants without depression were recruited and
scanned from 3 studies under the Canadian Biomarker Integration Network for Depression. Volumetric data were used to
generate brain centile scores, which were examined for 1) differences between participants with MDD and control
participants; 2) differences between individuals with versus without severe childhood maltreatment; and 3) correlations
with depressive symptom severity, neurocognitive assessment domains, and escitalopram treatment response.
RESULTS: Brain centiles were significantly lower in the MDD group than in the control group. Brain centile was also
significantly correlated with working memory in the control group but not the MDD group. No significant associations
were observed between depression severity or antidepressant treatment response and brain centiles. Likewise,
childhood maltreatment history did not significantly affect brain centiles.
CONCLUSIONS: Consistent with previous work on machine learning models that predict brain age, brain centile
scores differed in people diagnosed with MDD, and MDD was associated with differential relationships between
centile scores and working memory. The results support the notion of atypical development and aging in MDD, with
implications for neurocognitive deficits associated with aging-related cognitive function.

https://doi.org/10.1016/j.bpsc.2024.04.008
Aging is associated with gradual physiological changes in the
brain and behavior. Age-related cognitive decline occurs in
several domains, including memory, attention, and executive
function (1,2). For example, a large-scale prospective cohort
showed that memory, processing speed, executive function,
and global cognition declined with older age (3). In turn, age-
related cognitive decline is correlated with global cerebral at-
rophy, as evidenced by reduced gray matter volume (GMV),
cortical thinning, sulcal widening, and ventricular expansion on
magnetic resonance imaging (MRI) (4). Using large databases,
characterizations of normative brain development and aging
have illuminated the healthy aging brain at different ages (5).
However, physiological age-related decline in cognition is
heterogeneous (6); some individuals decline faster than others
of the same age, which may depend on environmental factors,
genetics, or both (7).
ª 2024 Society of Biological Psychiatry. Published by Elsevier Inc.
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Major depressive disorder (MDD) may significantly influence
age-related decline (8). Individuals diagnosed with MDD exhibit
sustained deficits in attention, working memory, and long-term
memory, even after remission, and with greater effect in in-
dividuals with recurrent MDD (9). Furthermore, patients with
MDD present with altered brain structure and function such as
that observed in age-related cognitive decline, including gray
matter atrophy in regions crucial for memory formation and
processing, such as the hippocampus, frontal cortex, puta-
men, thalamus, and amygdala (10). Unfortunately, relatively
few studies have focused on the relationship between aging
and psychopathology. A comprehensive understanding of the
pathophysiology of MDD is important for developing novel
therapeutic strategies and optimizing existing ones. There is a
knowledge gap in understanding how depression impacts
brain aging and cognitive function.
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Brain-based age prediction is one method to understand
the interplay between heterogeneous brain- and behavioral-
based markers (11). Such approaches typically develop a
machine learning model predicting age and trained on
normative structural MRI data across the life span. Deviations
between the chronological and predicted ages, also called the
brain-predicted age difference (brain-PAD), can be applied to
find differences between diagnostic groups or associations
with behavior. There is considerable variability in the method-
ological approach (e.g., Gaussian process regression, regu-
larized gradient tree boosting, deep learning), feature
extraction (e.g., raw T1-weighted structural image, regional
parcellation), and normative sample used for training. Howev-
er, numerous studies have successfully investigated brain age
using this method, including to predict mortality (11), multiple
sclerosis progression (12), and dementia risk (13).

Patients with MDD may exhibit accelerated biological
indices of aging. For example, patients with MDD have shorter
leukocyte telomere lengths than control participants without
depression (HCs) (14,15), which may predict poorer response
to selective serotonin reuptake inhibitors (16,17). However,
brain-PAD–based studies have yielded conflicting findings,
with some (18–20) but not all (21) demonstrating higher brain-
PAD scores in individuals with MDD than in HCs. Similarly,
brain-PAD–based characterizations of aging in MDD conflict
with respect to pharmacotherapy response, with one group
reporting no correlations between brain-PAD and escitalopram
response (22) while another reported an association between
accelerated brain aging and poor response to sertraline (23).
Furthermore, these studies focused on adult cohorts and not
adolescents, which creates limitations for our understanding of
risk for psychiatric disorders during critical neuro-
developmental windows.

The development of human brain charts addresses the need
for a standardized tool to evaluate individual differences in
age-related brain changes across the life span. Like height and
weight growth charts, brain charts (5) present normative,
nonlinear trajectories of normative aging based on fitting
generalized additive models for location, scale, and shape
models from a large (N . 100,000), multisite structural MRI
dataset including the UK Biobank, Human Connectome Proj-
ect, and others. Global brain measures were used in Brain-
Chart, including cortical gray matter, white matter, subcortical
gray matter, and ventricular volumes. This approach was
empirically optimized, evaluated for confounds such as site,
and included consideration of nonlinear age-related changes in
volume, examined separately by sex. Centile scores exhibit
test-retest reliability in out-of-sample testing and robustness to
varying image analysis pipelines. Brain centile scores have
potential clinical utility, showing significant differences in in-
dividuals with Alzheimer’s disease and males with MDD (5).
Brain charts could serve as a useful tool to investigate the
relationship between aging and brain development. However,
it is unknown whether brain centiles scores are related to
cognitive factors related to aging, treatment response, or
environmental factors that confer risk for MDD (24).

Childhood maltreatment (CM) is one well-documented risk
factor for MDD. CM is correlated with earlier depression onset,
greater severity, and a higher likelihood of developing
treatment-resistant MDD (25,26). Individuals with a history of
Biological Psychiatry: Cognitive Neuroscience and Ne
CM also demonstrate structural changes in brain areas
involved in emotional processing and memory, including the
hippocampus and dorsomedial prefrontal cortex (27–30). CM
interacts with age in predicting the cortical thickness of
emotion regulation regions, such as the insular, cingulate,
orbitofrontal, dorsolateral, and medial prefrontal cortices (31).
Therefore, investigating the effects of CM on brain age may
elucidate the mechanism through which it increases MDD risk.

In this study, we aimed to examine the impact of brain
aging—measured by brain chart–based centile scores—in
MDD using a multisite sample of individuals (ages 12–65
years). We also aimed to investigate the impact of brain ag-
ing on age-related cognition, CM, and antidepressant
response. We hypothesized that brain centile scores would
differ significantly between individuals with MDD and HCs, with
greater atypical centile scores being correlated with depres-
sion severity. We also expected an association between centile
scores and cognitive performance in age-related domains and
that this relationship would differ in MDD. Additionally, we
predicted that brain centile score would be associated with
response to the commonly prescribed first-line antidepressant
medication escitalopram. Lastly, we hypothesized that centile
scores would differ in individuals with and without a history of
CM.

METHODS AND MATERIALS

Recruitment

HCs and participants with depression were recruited for 3
studies associated with the CAN-BIND (Canadian Biomarker
Integration Network for Depression) program (32): CAN-BIND-
1 (Biomarkers of Antidepressant Response to Medication;
NCT01655706), PRO-CAN (Canadian Psychiatric Risk and
Outcome Study; NCT02739932), and SARA (Stress and
Reward Anhedonia Study; NCT02798094). Details about the
aims and design for each study are provided in the
Supplement. We were adequately powered to assess differ-
ences in treatment response (33) and centile score. Using the
results reported by Luo et al. (34) at a = 0.05 and power = 0.8,
we would need 86 participants per group to detect a significant
difference.

CAN-BIND-1 aimed to identify biological markers of phar-
macotherapy response (33); recruitment occurred at 6 sites
across Canada. All participants with MDD (ages 18–60 years)
were treated with 8 weeks of flexible-dose open-label escita-
lopram. HCs had the same age range and language re-
quirements as the participants with MDD but no history of Axis
I or II disorders. PRO-CAN sought to identify youths at risk of
developing serious mental illnesses (ages 12–25 years); this
study recruited individuals with 1) no mental health concerns,
2) an at-risk group with a family history of a serious mental
illness, 3) a group with early mood symptoms, or 4) attenuated
serious mental illness symptoms (35). For our purposes, we
retained HCs and individuals with MDD symptoms who met
DSM-IV-TR criteria for a major depressive episode. SARA
examined abnormalities in the processing of stressful and
rewarding information and their relationship to depression
(ages 18–65 years). Participants with MDD and HCs were
recruited (36). Eligible participants of all studies provided
written informed consent, and all study protocols were
uroimaging August 2024; 9:786–799 www.sobp.org/BPCNNI 787
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approved by the research ethics board at each participating
site.

Clinical Measures

CAN-BIND-1 and SARA measured depression severity using
the Montgomery–Åsberg Depression Rating Scale (MADRS)
(37), a 10-item clinician-rated questionnaire. For CAN-BIND-1,
the MADRS was acquired every 2 weeks throughout treatment.
PRO-CAN assessed depression using the Beck Depression
Inventory (38), a 21-item self-report questionnaire. Conse-
quently, we used the MADRS and Beck Depression Inventory
as the primary measures of depression severity. Values were
combined by normalizing scale scores, generating z scores.

CM was defined using a continuous measure including
emotional, physical, and sexual abuse. For CAN-BIND-1 and
SARA, CM history was collected using the Childhood Experi-
ence of Care and Abuse (39) scale, which measured emotional
and physical abuse on a 4-point scale (little/none, some,
moderate, marked) and sexual abuse on a 5-point scale (none,
little, some, moderate, marked). PRO-CAN used a trauma
documentation form to record trauma or abuse experienced
before the age of 18 (35), which included a 5-point impact
scale for all measures (none, little, moderate, quite a bit,
extreme). For this dataset, we adjusted the 5-point scale to a
4-point scale for emotional and physical abuse to be consis-
tent with CAN-BIND-1 and SARA by combining “none” and
“little” selections.

Participants recruited in CAN-BIND-1 were treated with
escitalopram. Antidepressant outcomes were quantified as
both a percentage change in MADRS scores between baseline
and week 8 and a binary outcome of response ($50% MADRS
change) versus nonresponse.

Neurocognitive Measures

CAN-BIND-1 acquired the CNS Vital Signs (RRID:
SCR_024475), a tool that assesses 10 neurocognitive do-
mains: cognitive flexibility, executive function, composite
memory, processing speed, reasoning, social cognition, sus-
tained attention, visual memory, verbal memory, and working
memory. For analysis purposes, we used percentile scores,
which standardized an individual’s performance relative to an
age-matched normative database.

Neuroimaging Acquisition and Preprocessing

The MRI protocols for all CAN-BIND studies have been re-
ported previously (40). To summarize, all 3 studies obtained
whole-brain T1-weighted structural scans with a 3-dimensional
isotropic resolution of 1 mm. Structural neuroimaging data
were acquired using 3T MRI systems, with various scanner
models across sites; acquisition parameters are summarized in
the Supplement.

As previously described (5), we preprocessed T1-weighted
structural MRI scans using the standard recon-all pipeline in
FreeSurfer version 7.1.0 (RRID: SCR_001847). Briefly, the first
step of recon-all includes motion correction, nonuniform in-
tensity normalization, projection to the Talairach space, skull
stripping, and tissue/subcortical segmentation. Subsequently,
the second and third steps serve to smooth, interpolate, and
tesselate the data into surface space. We extracted the
788 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
following tissue volume data for each participant from the
aseg.stats file outputted by recon-all: total GMV; total cortical
white matter volume; subcortical GMV, which encompassed
the thalamus, caudate, putamen, pallidum, hippocampus,
amygdala and nucleus accumbens; and ventricular volume (the
volume of ventricles and choroid plexus label).

Image quality was considered during acquisition and pre-
processing. Participant instructions and support materials
were uniform across all sites (40), and acquisition parameters
were standardized when possible across all CAN-BIND sites. A
participant also traveled to each scanning site to quantify
intersite variance. All scans were initially assessed by trained
quality control raters, as they were being collected, for motion,
field-of-view, or other artifacts. Participants were rescanned if
necessary. After preprocessing, we executed quality control
and reprocessed for improper segmentations if necessary on
33 randomly selected scans, which represents approximately
5% of samples from different scanners, and scans with a value
2 standard deviations below or above the mean on any output.

Brain Centile Extraction

Participant demographic and clinical data, including age, sex,
diagnosis, and MRI measures were compiled. The dataset was
uploaded onto BrainChart (http://www.brainchart.io) (5) to
obtain individualized centile scores that indicate the presence
of any accelerated aging. Each centile score is computed by
quantifying the vertical deviation of structural MRI phenotypes
to the reference curves, which are stratified by sex. The tool
incorporates an out-of-sample estimator of model parameters
where maximum likelihood is used to estimate study-specific
random effects; this allows the scoring of centiles using the
cumulative density function.

Data Analysis

We used R-Studio version 2022.07.0 (RRID: SCR_000432) to
examine relationships between variables of interest. To ac-
count for scanner differences, we used the harmonization
method ComBat on brain centiles and any MRI phenotypes
used to generate it (41–43). We used general linear models
(GLMs) and the Benjamini-Hochberg method (44) to control for
multiple comparisons using the false discovery rate (FDR). By
characterizing brain aging with centile scores, the following
questions were investigated:

1. Does brain centile score differ in participants diagnosed
with depression compared with HCs? We conducted a
GLM with diagnosis and ComBat-corrected centile score
as the independent and dependent variables, respectively,
and age and sex as covariates. Within the MDD group,
including both participants with single-episode and those
with recurrent MDD, we also used the GLM model to test
whether the number of past depressive episodes, current
episode duration, age of MDD onset, and depression
severity would predict brain centile.

2. Which structural MRI measures drive differences in brain
centile score by diagnosis? Analyses were performed
separately for males and females; for each GLM model,
diagnosis was the predictor variable, ComBat-corrected
GMV, white matter volume, subcortical GMV, or
ugust 2024; 9:786–799 www.sobp.org/BPCNNI
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ventricular volume were the outcome variables, and age
was a covariate. Results were corrected for multiple com-
parisons using FDR.

3. Do brain centile scores predict variability in neurocognitive
domains associated with aging, and does this relationship
differ between people diagnosed with MDD and HCs? In
HCs, we first predicted 10 neurocognitive domains sepa-
rately using ComBat-corrected brain centiles, with both sex
and age as covariates. Then, we used brain centiles to
predict ranked scores for domains that showed statistically
significant results while incorporating several covariates:
sex, diagnosis, age, and the interaction between brain
centile and diagnosis. FDR multiple comparison correction
was performed.

4. Does brain centile score differ in people with versus without
a history of CM? Using a GLM, we predicted ComBat-
corrected brain centile using overall CM and specific
types of maltreatment; we added age, sex, diagnosis, and
the interaction between CM and diagnosis as covariates.
Multiple comparison correction was done using FDR.

5. Does brain centile score predict antidepressant response to
escitalopram? In CAN-BIND-1 participants, a linear mixed-
effects model was used to further examine brain centiles
with varying individual depression severity over 8 weeks.
This model predicting MADRS was generated using the
lmerTest package and included time, brain centile score,
age, and sex as fixed effects and the intercept as a random
effect. We used a time by centile score interaction to
determine whether pretreatment centile score was associ-
ated with escitalopram-related MADRS response. We also
used a logistic GLM model with ComBat-corrected brain
centile as the independent variable, antidepressant
response as the dependent variable, and included cova-
riates such as age, sex, and baseline depression severity.
RESULTS

Combining the CAN-BIND-1, PRO-CAN, and SARA datasets
yielded a large, multisite sample (Table S1) of patients with
moderate depression diagnosed with MDD (n = 304) and HCs
(n = 236). The MDD group was significantly older than the HC
group on average (Table 1). Sex did not differ by diagnostic
status (control, single-episode MDD, recurrent MDD) (c2 =
2.264, p = .132). Depression severity was normally distributed
in both the single-episode and recurrent MDD groups
(Figure S1). We included age and sex as covariates in all
subsequent models.

Next, we examined whether diagnosis impacted brain aging
(Table S2). The overall GLM was significant (R2 = 0.036,
F4,535 = 4.968, p , .001), and the MDD group exhibited
significantly lower brain centile scores than the HC group
(b = 20.055, SE = 0.025, t1,535 = 22.194, p = .029, partial f2 =
0.007). Post hoc analyses stratified by sex indicated that this
effect was likely driven by females, although the trend was
nonsignificant (Figure 1A, B). We also carried out post hoc
analyses to compare brain centiles of HCs with those of par-
ticipants with single-episode and recurrent MDD (Table S3).
Only the recurrent MDD group showed significantly lower brain
centiles than HCs (b = 20.058, SE = 0.028, t1,313 = 22.094,
Biological Psychiatry: Cognitive Neuroscience and Ne
p = .037, partial f2 = 0.007) (Figure 1C), indicating that our initial
finding was likely driven by brain centile scores in the recurrent
MDD group. We further tested whether the cumulative expo-
sure to MDD could influence brain aging (Table S4); past
depressive episodes (R2 = 0.087, F3,176 = 5.571, p = .001;
b = 20.006, SE = 0.005, t1,176 = 21.215, p = .226), current
episode duration (R2 = 0.102, F3,174 = 6.601, p , .001; b =
0.001, SE = 0.001, t1,174 = 1.535, p = .127), and age of MDD
onset (R2 = 0.077, F3,178 = 4.967, p = .002; b = 20.001, SE =
0.002, t1,178 = 20.324, p = .746) did not demonstrate a sig-
nificant relationship with brain centiles. Additionally, while the
model was significant (R2 = 0.030, F3,300 = 3.100, p = .027),
brain centile scores were not significantly correlated with
depression severity in both single-episode and recurrent MDD
groups (b = 0.015, SE = 0.017, t1,300 = 0.926, p = .355)
(Figure 1D; Table S5), as well as only in the recurrent MDD
group (b = 0.010, SE = 0.019, t1,219 = 0.535, p = .594). In
summary, the MDD group had atypical brain centile scores
compared with the HC group that were not associated with
cumulative MDD exposure and depression severity.

Next, we investigated which global brain measures contrib-
uted to altered brain centile scores in MDD (Table S6). We
performed these analyses separately because sex differences
have been consistently reported in the brain aging literature
(45–47), including in global brain measures that drove atypical
brain centile scores in neuropsychiatric disorders in our initial
report (5). In females (Figure 2A, C, E, G), MDD was significantly
associated with a decrease in GMV (b = 213,451.3, SE =
4981.2, t1,341 = 22.70, FDR-corrected p [pFDR] = .029, partial
f2 = 0.04) (Figure S2) and white matter volume (b = 213,091.7,
SE = 5371.4, t1,341 = 22.437, pFDR = .046, partial f2 = 0.02) but
not subcortical GMV (b = 2898.75, SE = 521.09,
t1,341 = 21.725, pFDR = .171) or ventricular volume (b = 472.81,
SE = 643.66, t1,341 = 0.735, pFDR = .463). No significant differ-
ences were observed by diagnosis in males (Figure 2B, D, F, H).

Next, we identified which neurocognitive domains were
impacted by brain aging in MDD. To constrain our analysis, we
first tested the relationship between brain centiles and cogni-
tive performance in HCs (Table S7). After correcting for multi-
ple comparisons, only working memory was significantly
associated with brain centile score (b = 26.343, SE = 7.442,
t1,163 = 3.540, pFDR = .005, partial f2 = 0.09) (Figure 3A). Pro-
cessing speed showed a similar trend; however, this relation-
ship did not survive correction for multiple comparisons (b =
19.109, SE = 7.683, t1,171 = 2.487, puncorrected = .014)
(Figure 3B). Based on this, we decided to further analyze these
2 cognitive domains in all participants (Table S8). Because of
normality issues impacting GLM assumptions, we rank-
transformed our dependent variables. The model for pro-
cessing speed performance (R2 = 0.035, F5,379 = 2.722, p =
.020) revealed a significant main effect of brain centile score
(b = 79.116, SE = 29.858, t1,379 = 2.650, p = .008, partial f2 =
0.02), but no significant diagnosis by centile score interaction
(b =249.856, SE = 39.992, t1,379 =21.247, p = .213). Likewise,
the GLM predicting working memory performance (R2 = 0.052,
F5,357 = 3.939, p = .002) also had a significant main effect for
brain centiles (b = 111.383, SE = 28.676, t1,357 = 3.884, p ,

.001, partial f2 = 0.04). In the latter model, there was a signif-
icant 2-way interaction such that there was no significant
relationship between working memory and brain centile in
uroimaging August 2024; 9:786–799 www.sobp.org/BPCNNI 789
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Figure 1. Neither (A) female nor (B) male partici-
pants diagnosed with major depressive disorder
(MDD) exhibited significantly different brain centile
scores relative to control participants without
depression. (C) The recurrent MDD group showed
significantly lower brain centiles than the control
group. (D) Depression severity as quantified by the
Montgomery–Åsberg Depression Rating Scale or the
Beck Depression Inventory showed no significant
associations with brain centiles. Brain centile scores
were adjusted for sex and age. Error bars represent
the 95% CI. *p , .05.

Table 1. Descriptive Statistics for Demographic and Clinical Characteristics

MDD Control

Test Statistica pn Mean (SD) n Mean (SD)

All Participants

Age, Years 304 32.806 (12.958) 236 27.987 (11.820) 3.696 2.42 3 1024

Sex, Female/Male 202/102 – 142/94 – 2.264 .132

Depression Severity 304 – – – – –

CAN-BIND-1

Age, Years 192 34.75 (12.553) 107 32.850 (10.483) 1.726 .086

Sex, Female/Male 125/67 – 69/38 – 0.012 .915

MADRS 192 29.875 (5.619) – – – –

PRO-CAN

Age, Years 20 18.15 (2.978) 69 18.826 (3.992) 20.558 .579

Sex, Female/Male 8/12 – 32/37 – 0.255 .614

BDI 20 27.55 (10.590) – – – –

SARA

Age, Years 92 29.554 (12.760) 60 29.85 (14.003) 20.660 .511

Sex, Female/Male 69/23 – 41/19 – 0.807 .369

MADRS 92 26.859 (7.117) – – – –

BDI, Beck Depression Inventory; CAN-BIND, Canadian Biomarker Integration Network for Depression; MADRS, Montgomery–Åsberg Depression Rating Scale; MDD,
major depressive disorder; PRO-CAN, Canadian Psychiatric Risk and Outcome Study; SARA, Stress and Reward Anhedonia Study.

aAnalysis used t test and c2 test.
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Figure 2. Female participants diagnosed with
major depressive disorder (MDD) had significantly
lower (A) gray matter volume (GMV) and (C) white
matter volume (WMV) than control participants
without depression. This was not seen for (E)
subcortical GMV (sGMV) or (G) ventricular volumes
(VVs) or in the (B, D, F, H)male cohort. Volumes were
adjusted for age. Error bars represent the 95% CI.
*p , .05.
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MDD (b = 282.790, SE = 38.706, t1,357 = 22.139, p = .033,
partial f2 = 0.01) (Figure 3C).

Subsequently, we wanted to explore whether the presence
of CM explained any variance in brain centile scores for in-
dividuals with MDD or HCs (Table S9). We found no statistically
significant prediction of brain centile by overall CM (b = 0.009,
SE = 0.010, t1,492 = 0.855, pFDR = .605) (Figure 4A, B),
emotional abuse (b = 20.014, SE = 0.024, t1,493 = 20.586,
pFDR = .605), physical abuse (b = 0.041, SE = 0.022, t1,493 =
1.871, pFDR = .248, puncorrected = .031), or sexual abuse (b =
0.012, SE = 0.024, t1,492 = 0.517, pFDR = .605).

Finally, we assessed whether brain centile scores predicted
antidepressant response to 8 weeks of open-label escitalo-
pram (Table S10). While there was a significant effect of time
(b = 213.502, SE = 0.574, t4,664 = 223.514, p , .001), there
was no significant main effect of centile score (b = 0.552,
SE = 2.033, t1,162 = 0.271, p = .786) and no interaction between
centile score and time (b = 0.560, SE = 2.101, t1,664 = 0.267,
Biological Psychiatry: Cognitive Neuroscience and Ne
p = .790). Antidepressant response measured by MADRS
percentage improvement (R2 = 0.023, F4,162 = 0.945, p = .440)
did not have a significant main effect (b = 1.338, SE = 9.344,
t1,162 = 0.143, p = .886) (Figure 4C). A similar trend was
observed for response as a dichotomous variable (model
R2 = 0.013, c2

4,162 = 3.004, p = .557; main effect b = 0.581,
SE = 0.591, t1,162 = 0.984, p = .325).
DISCUSSION

Brain centile scores provide a quantitative lens to analyze the
complex interactions between aging and MDD in the hopes of
gaining a deeper understanding of the condition’s impact on
cognition, treatment response, and the role of risk factors such
as CM. Here, we showed that people diagnosed with MDD
from adolescence to late adulthood exhibited significantly
lower brain centile scores than HCs. However, depression
severity was not significantly correlated with centile scores in
uroimaging August 2024; 9:786–799 www.sobp.org/BPCNNI 791
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Figure 3. In control participants without
depression, (A) working memory scores showed
significantly positive associations with brain
centiles while (B) processing speed scores did
not. (C) In working memory specifically, a sig-
nificant interaction was seen between brain
centiles and diagnosis. Neurocognitive domain
scores were adjusted for age and sex. *p , .05.
MDD, major depressive disorder.
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the depressed group. Individuals with recurrent MDD had the
largest deviations in brain aging compared with HCs. De-
viations in brain centile score were driven by abnormalities in
gray matter and white matter volume, which were most
prominent for females and not males. Additionally, we found
that centile scores were significantly associated with working
memory in HCs, and this relationship was not present in par-
ticipants with MDD. CM and reduction in depression severity
after escitalopram treatment were not significantly correlated
with brain centile scores. We used aging trajectories from the
largest normative dataset to date, and the results offer novel
insights into age-dependent deficits in MDD.

Consistent with our initial hypothesis, we found a lower
brain centile score in individuals with MDD than in HCs, which
was associated with lower gray matter and white matter vol-
ume in females with MDD than in HCs, possibly indicative of
accelerated aging (48–50). These results are consistent with
previous research using other prediction models that there is a
small but significant change in brain age (brain-PAD) in MDD
compared with HCs (18–20,34). In contrast, a previous CAN-
BIND report revealed no significant differences in baseline
brain-PAD between individuals with MDD and HCs (22). This
may be attributed to differences in sample size, normative
reference sample, brain-based features, or modeling choices.
First, the previous report included only CAN-BIND-1
792 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
participants, while this report used data from 2 additional
datasets, thereby bolstering our sample size and increasing
our age range. Second, the original reference sample was
45,615 individuals ages 3 to 96 years, while BrainChart uses
scans from 95,536 individuals from 115 days postconception
to up to 100 years old. Third, our previous report used
FreeSurfer-generated volume, surface area, and cortical
thickness values from the Human Connectome Project atlas.
The BrainChart method uses volumetric measures for tissue
classes and is not stratified by region (except cortical and
subcortical GMV). Lastly, although both brain-PAD and
BrainChart attempt to assess individual deviation, they have
several methodological differences. Brain-PAD compares an
individual’s estimated brain age with their chronological age
using a machine learning model based on linear gradient tree
boosting and tuned using 5-fold cross-validation (51). Brain-
Chart instead uses generalized additive models for location,
scale and shape models, which incorporate linear and
nonlinear trends in volume related to age. Both procedures
generated models stratified by sex.

Depression severity in MDD—and more specifically the
recurrent MDD group—was not associated with deviations in
brain aging; however, some (20) but not all (19,23) previous
studies reported a positive correlation between brain-PAD and
depression severity. Future studies should clarify the
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Figure 4. No significant differences were
seen between brain centile scores for varying
childhood maltreatment scores for both the (A)
control and (B) major depressive disorder (MDD)
groups. Brain centiles were adjusted for age,
sex, diagnosis, and the interaction between
abuse severity and diagnosis. (C) Also, no sig-
nificant correlation was seen between escitalo-
pram response and brain centiles of the MDD
group. Percentage changes in Montgomery–
Åsberg Depression Rating Scale (MADRS)
scores were adjusted for age, sex, and initial
depression severity. *p , .05.
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relationship between brain aging and MDD severity given the
notion that MDD is a clinically heterogeneous disorder and not
a unitary disease (52–54). Specific symptom profiles may be
associated with accelerated brain aging.

We also observed sex differences in the relationship be-
tween brain centile score inputs and diagnosis. GMV and WMV
were significantly reduced with an MDD diagnosis, but only in
females, providing further evidence of sex differences in brain-
based markers of MDD (55). These findings are consistent with
previous research regarding sex-specific brain structural
changes in MDD. In one study, females exhibited GMV
reduction, specifically in the left lingual gyrus and dorsal medial
prefrontal gyrus (56).

Brain centile score was positively correlated with working
memory in HCs; greater neurocognitive performance was
associated with a higher brain centile score. This finding fol-
lows previous literature generally demonstrating working
memory impairment with old age (57–59); however, it is novel
in elucidating the relationship between working memory and
normative brain aging specifically. In contrast to HCs, there
was not a significant relationship between working memory
performance and brain centile score in participants with MDD.
It appears that an MDD diagnosis may disrupt age-related
Biological Psychiatry: Cognitive Neuroscience and Ne
effects that normally shape the positive relationship seen in
the control group. This result is consistent with our expectation
that working memory is disrupted in MDD relative to the con-
trol group, which has also been well-documented in the liter-
ature (60–62). Additional studies are needed to clarify whether
an MDD diagnosis influences the protective effect of a high
brain centile score.

We did not find a significant correlation between brain aging
and CM; this was inconsistent with our hypothesis and results
of previous studies. In one study, early CM demonstrated as-
sociations with reduced hippocampal GMV (63). Furthermore,
a study using the PRO-CAN data demonstrated that volumes
of the amygdala nuclei mediated the severity of depression
and anxiety symptoms in at-risk individuals (a cohort that was
not included in the current analysis) (64). A recent study also
showed that sexual abuse during childhood was correlated
with a significantly reduced GMV in the right middle occipital
gyrus (65). These studies showed reductions in GMV as are
commonly seen in normative brain aging. The lack of expected
association may be due to differences in measures of CM
between the CAN-BIND studies. On the other hand, emotional
subtypes of CM have been suggested as stronger predictors
of MDD than physical CM (66–68), which was not found in our
uroimaging August 2024; 9:786–799 www.sobp.org/BPCNNI 793

http://www.sobp.org/BPCNNI


Brain Aging and Working Memory in MDD
Biological
Psychiatry:
CNNI
analysis. Future studies could also consider other MDD risk
factors that are influenced by CM, such as personality traits
and coping styles (69,70), or risk factors that commonly co-
occur with CM, including early-life socioeconomic status
(71,72) and parental separation (73,74).

Similarly, our hypothesis regarding escitalopram response
was not supported by the findings, which is consistent with the
previous CAN-BIND-1 analysis (22). However, other studies
revealed that accelerated brain aging was associated with a
change in depression severity as measured by the 17-item
Hamilton Depression Rating Scale, specifically a decreased
response to 8-week sertraline treatment (23) and an increased
response to placebo neuromodulation (20). Therefore, future
studies should explore whether brain centiles can predict re-
sponses to other antidepressant types of the selective sero-
tonin reuptake inhibitor class or even MDD treatments like
transcranial magnetic stimulation. There could also be an
exploration into the longitudinal effects of MDD treatment on
brain centiles.

We note several limitations of this study. First, our analysis
was limited by its cross-sectional nature, which leads to the
inability to establish a causal relationship between brain aging
and MDD. Prospective data could help to resolve the rela-
tionship. For example, one future study could recruit partici-
pants who recently experienced a major negative life event like
trauma and determine whether brain age at the time of the
event or longitudinal changes in brain age increase the risk for
posttraumatic symptoms (75). Second, as previously
mentioned, the symptoms of MDD are heterogeneous, and
many different symptoms can lead to a diagnosis. Some recent
studies have used functional MRI to identify MDD subtypes
based on connectivity profiles in the brain, which could
potentially be integrated into brain centiles (76). Third, Brain-
Chart estimates brain age using global brain measures instead
of regions of interest. However, volumetric loss in the dorso-
lateral prefrontal cortex, insula, and hippocampus have been
indicated in recurrent MDD (77,78). Thus, exploring centile
scores through structures of specific regions of interest is an
area for future exploration. Additionally, although our sample
size was smaller than those of other studies like the UK Bio-
bank, our MDD group was robust because it contained in-
dividuals with a confirmed—and not just a probable—major
depressive episode. Lastly, we have not examined whether
brain centiles could reflect longitudinal changes in neuro-
cognitive domain scores with aging or MDD treatment. Lon-
gitudinal studies will also help to uncover the directionality of
effects, for example whether atypical brain aging is a cause or
a consequence of MDD recurrence.
Conclusions

In this article, we attempted to examine the use of brain cen-
tiles as a tool to characterize brain aging and its relationship
with MDD diagnosis, cognition, CM, and escitalopram
response. We provided evidence substantiating the clinical
utility of brain centiles as a predictor of MDD diagnosis and
possibly long-term working memory performance. Future
studies need to address general unresolved issues in the field
of brain aging, such as defining causal relationships between
794 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging A
brain aging and MDD and incorporating MDD subtypes to
consider the heterogeneity of the disorder.
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